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Abstract. As people move through uncertain environments, they are
often presented with multiple route choices. Deciding which route to
take requires an understanding of the environmental features and how
they affect the person’s interpreted cost of each route. These quantities
can be appropriately modeled as fuzzy numbers to capture the inherent
uncertainty in human knowledge. We present an approach to guide a
person’s decision-making process through an environment modeled as
a fuzzy weighted graph, using an α-level OWA operator to implement
the principle of bounded rationality. A cost value is computed for each
possible route choice, which can then be used to rank the set of routes
and make a decision.

1 Introduction

Human geography is a diverse field involving the study of human traits in geo-
graphic space. One aspect of human geography is the study of how people nav-
igate through environments. In contrast to many computational path-planning
algorithms, humans do not always make optimal decisions when moving in an
environment. Rather, we make decisions based on a cognitive map built from
spatial knowledge and experience [1]. Rarely do these maps contain perfect in-
formation, as locations and spatial relationships between objects are measured
using humanistic concepts such as “There is a hill off in the distance,” or “This
path is about three miles long.” This type of uncertainty can be modeled using
fuzzy sets.

An environment can be viewed as a graph of discrete locations represented
as vertices and path transitions represented as edges. A person, or agent, may
assign a cost value to each path segment based on their personal interpretation
of the environmental features of that segment and how those features affect their
mobility along the path. The uncertainty inherent in the agent’s perception is
modeled by using fuzzy numbers to represent the costs. In order to evaluate the
total cost of a route between two locations, an agent must aggregate the costs
of each route segment. By studying decisions made by artificial agents in an



agent-based modeling scheme, we can gain insight on how groups of people will
move in their environment under stress conditions, one of the goals of human
geography.

The focus of this paper is to present a method for determining the cost
assigned to a particular route, based on environmental features and an agent’s
attributes. We use an α-level Ordered Weighted Average (OWA) operator [2] to
implement bounded rationality [3], the idea that agents have limited resources
with which to make decisions, resulting in sub-optimal choices. Once a route
cost has been established in the form of a fuzzy number, a variety of path-
planning algorithms can be used to guide the agent’s decision-making process.
These include standard fuzzy shortest path algorithms such as [4] and [5] or
the genetic algorithm approach of [6]. The remainder of this paper is outlined
as follows. In Sect. 2, we define the concepts of fuzzy numbers, fuzzy weighted
graphs, and bounded rationality as implemented by an α-level OWA operator.
In Sect. 3, we present an example scenario consisting of three different routes
and show how different agent types evaluate the environment differently. Our
conclusions and ideas for future work are given in Sect. 4.

2 Path Planning in Uncertain Environments

2.1 Fuzzy Numbers

A fuzzy number is a convex, normalized fuzzy set A : IR→ [0, 1] that provides a
way of representing uncertainty in the value of a real number. The membership
function µA(x) gives the degree of membership that a specific value x has in the
fuzzy number A. Using Zadeh’s extension principle, we can define the arithmetic
operators for fuzzy numbers, as well as other functions such as maximization and
minimization. For a function f(A,B) operating on two fuzzy numbers A and B,
the resulting fuzzy number is given as

µf(A,B)(z) = sup
z=f(x,y)

min
(
µA(x), µB(y)

)
. (1)

Because fuzzy numbers are convex, we can use α-cuts and interval arithmetic to
quickly compute the result of a fuzzy computation. An α-cut of a fuzzy number
is an interval αA = [l, r] such that µA(x) ≥ α, x ∈ [l, r]. The decomposition
theorem states that a fuzzy number is simply the union of all α-cuts, α ∈ [0, 1].
For each value of α, the result of a convex, continuous function f(αA, αB) on
the α-cuts of two fuzzy numbers αA and αB is computed as

f(αA, αB) = f
(
[a, b], [c, d]

)
= [l, r], (2)

l = min
(
f(a, c), f(a, d), f(b, c), f(b, d)

)
,

r = max
(
f(a, c), f(a, d), f(b, c), f(b, d)

)
.

Although any fuzzy set that satisfies the conditions of convexity and normal-
ity can be used to represent a fuzzy number, we often use triangular membership



functions for their simplicity. We define a triangular fuzzy number as a 3-tuple
(a, b, c), where the interval [a, c] is the support and b is the peak of the fuzzy
number.

2.2 Fuzzy Weighted Graphs

An environment can be represented as a fuzzy weighted graph G̃ = (V, E ,X ),
where V = (v1, · · · , vN ) is the set of vertices representing the discrete locations
in the environment, E is the set of edges ek = (vi, vj) ∈ V × V representing
possible transitions from one location to another, and X is a set of fuzzy weights
assigned to each edge. For each edge ek, we denote a vector of fuzzy numbers

X̃(ek) =
(
X̃1(ek), · · · , X̃r(ek)

)
, where each element X̃i(ek) represents a different

measured feature of the edge ek (e.g. length, slope, path type, etc.).
For each edge ek = (vi, vj), we denote tail(ek) = vi and head(ek) = vj . An s, t

path p in G̃ is an n-tuple p = (e1, · · · , en) ∈ En such that head(ei) = tail(ei+1)
for i = 1, · · · , n−1. We denote the start of the path as s = tail(e1), and the end
of the path as t = head(en). P(s, t) is the set of all s, t paths. For any path p ∈
P(s, t), we can define an aggregated weight vector F̃ (p) =

(
F̃1(p), · · · , F̃r(p)

)
,

where F̃i(p) is the aggregation of all fuzzy numbers X̃i(ek), ek ∈ p for the feature
i. The choice of aggregation function depends on the feature, as some features
such as distance are well suited for a summation-type aggregation, whereas other
features such as slope might be better aggregated with a maximization operator.

2.3 Bounded Rationality

An agent decision-maker trying to plan a route from point s to point t will ul-
timately need to choose a path from the set P(s, t). To do this, the agent will
need to have a method for comparing paths. For a given path p ∈ P(s, t), the

aggregated weight vector F̃ (p) provides a summarization of the various mea-
surable features of the path. Not all agents are identical, however, so we define

an agent-specific interpretation Ã(p) =

(
Ã1(p) = g̃1

(
F̃1(p)

)
, · · · , Ãr(p) =

g̃r

(
F̃r(p)

))
where each function g̃i

(
F̃i(p)

)
is defined independently for each

feature. These functions define how much various environmental properties af-
fect the agent’s interpreted cost of a path. As a rule of thumb, the values should
be scaled into units corresponding to the amount of effort the agent attributes
to moving along a path with each of the various features. We avoid explicitly
normalizing the resulting vector Ã(p) to allow certain features to dominate the
final cost in all circumstances. For example, most agents would consider a path
that contains no off-road segments to be far less costly than a path that contains
several off-road segments. In this case, the off-road feature should be scaled by
a very large number to guarantee that it will be the dominant factor in the final
cost evaluation. Care should be taken to ensure that all of the resulting elements
of Ã(p) are all appropriately scaled.



The principle of bounded rationality states that a decision-maker cannot
always consider all sources of information and tends to utilize only the most
prominent features when making a decision. We implement bounded rational-
ity using an α-level OWA operator to reduce the agent interpretation vector
Ã(p) to a single fuzzy cost value C̃(p). An α-level OWA operator is a mapping

Φ
W̃

: (Ã1(p), · · · , Ãr(p)) 7→ C̃(p) where W̃ = (W̃1, · · · , W̃r) is a vector of fuzzy
number weights defined on the domain [0, 1]. The Alpha-Level Approach defined
in [2] provides a method to compute Φ

W̃
using α-cuts. For each α ∈ [0, 1],

αΦ
W̃

(αÃ1(p), · · · , αÃr(p)) =


r∑
i=1

wiaσ(i)

r∑
i=1

wi

∣∣∣∣∣ wi∈αW̃i

ai∈αÃi(p)
i=1,··· ,r

 , (3)

where σ : (1, · · · , r)→ (1, · · · , r)
such that aσ(i) ≥ aσ(i+1) ∀ i = 1, · · · , r − 1.

From the set of αΦ
W̃

, the final cost value can be obtained as

C̃(p) =
⋃

0≤α≤1

α · αΦ
W̃

(αÃ1(p), · · · , αÃr(p)). (4)

An efficient algorithm to quickly compute the α-level OWA operator is given
in [2]. By changing the weight vector, different aggregation operations can be
defined, such as averaging the first k elements or considering only the single most
influential feature.

3 Example

To demonstrate our method, consider the following hypothetical scenario. An
agent is trying to reach a goal position on the opposite side of a large hill. The
agent is presented with three route choices: through the woods, over the hill, or
the long way around. The shortest route goes directly over the hill, however this
route is very steep and unpaved. The next shortest route goes through a forrest
which provides shade and has only a mild elevation change, but the route is still
unpaved and also has a stream crossing with no bridge. The last route is the
longest, but it is completely paved and has almost no elevation change. One can
imagine three different types of agents that would prefer different routes based
on their personal traits. For example, an athletic agent that does not care about
elevation or path quality might prefer the direct route over the hill, whereas a
less active agent might need to take the long route to avoid climbing or going
off the paved route. Finally, a somewhat capable agent might prefer to take the
path through the woods – even with the dirt path, water crossing, and elevation
change – in order to avoid walking in the sun.

We model this scenario with the fuzzy weighted graph shown in Fig. 1. The
fuzzy weights assigned to each edge are the triangular fuzzy numbers shown in



Table 1. These represent the distance, slope, path quality, amount of shade, and
number of water crossings as measured by the agent. Note that the shade values
are defined so that unshaded routes have a greater cost value. It is appropriate
to use fuzzy numbers to represent these values, as an agent will likely not have
perfect information. In this example, the route through the woods is A–B–C–E–
F , the route over the hill is A–B–E–F , and the long way around is A–B–D–E–F .
For each of these routes, we aggregate the features using fuzzy summation for
distance, path, shade, and water, and using the fuzzy max operator for slope to
represent how an agent may only care about the steepest part of a path. The
resulting aggregated feature vectors are shown in Fig. 2.

Fig. 1. Three Route Fuzzy Weighted Graph

Table 1. Fuzzy edge weights for the graph in Fig. 1

Edge Distance Slope Path Shade Water

(A,B) (1, 2, 3) (0, 0.64, 2.6) (0, 0, 0.2) (1, 2, 3) (0, 0, 0.2)

(B,C) (2, 4, 6) (0.8, 2.8, 4.8) (1.5, 3.5, 5.5) (0, 0.5, 2.5) (0, 0, 0.4)

(B,D) (3.5, 7, 11) (0, 0.57, 2.6) (0, 0, 0.7) (3.5, 7, 11) (0, 0, 0.7)

(B,E) (2.5, 5, 7.5) (5.5, 7.5, 9.5) (1.5, 4, 6.5) (2.5, 5, 7.5) (0, 0, 0.5)

(C,E) (2.5, 5, 7.5) (0.86, 2.9, 4.9) (2, 4.5, 7) (0, 0.5, 3) (0, 1, 2.3)

(D,E) (4, 8, 12) (0, 0.7, 2.7) (0, 0, 0.8) (4, 8, 12) (0, 0, 0.8)

(E,F ) (1, 2, 3) (0, 0.25, 2.3) (0, 0, 0.2) (1, 2, 3) (0, 0, 0.2)

We now define three agent types with different interpretation functions. In
this example, each feature is multiplied by a scalar value such that for an agent

l, Ã
(l)
i = g̃

(l)
i

(
F̃

(l)
i

)
= β

(l)
i · F̃

(l)
i . The β values for the three agents in our

example are given in Table 2. The first agent associates a moderate cost with



steep and unshaded routes, as well as a high cost for water crossings. The second
agent weights long routes, unshaded routes, and water crossings with an equally
high cost. The third agent has a very high cost associated with steep routes, a
somewhat high cost associated with unpaved routes, and a moderately high cost
for water crossings.
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Route 1 (Through the Woods) Route 2 (Over the Hill) Route 3 (The Long Way Around)

Fig. 2. Aggregation of Feature Values for Three Route Example

For each agent type, we evaluate the example environment using three differ-
ent sets of fuzzy number weights, shown in Table 3. The resulting cost evaluation
for each route is shown in Fig. 3. We see that the first agent tends to prefer the
forrest route, but due to the large cost associated with water crossings, this
agent also likes the direct route over the hill. As the OWA weights move from
the single most prominent feature toward the average of all features, the dis-
tinction between routes becomes less apparent. The second agent prefers the
hilly route for the “max” weights, but considers the forrest route to be about as
good as the hilly route for the other weights. The third agent clearly prefers the
long way around for all weight choices. From these costs, the agents can use any
appropriate fuzzy ranking method to pick a route to follow. A method such as



Table 2. Agent Interpretation Values (β)

Agent Distance Slope Path Shade Water

1 1 10 1 10 100

2 10 1 1 10 10

3 1 100 50 1 10

Table 3. α-level OWA Weights

W̃1 W̃2 W̃3 W̃4 W̃5

W̃ (Max) (0, 0.5, 1) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

W̃ (Top 2) (0.5, 1, 1) (0.5, 1, 1) (0, 0, 0) (0, 0, 0) (0, 0, 0)

W̃ (Average) (0, 0.2, 0.4) (0, 0.2, 0.4) (0, 0.2, 0.4) (0, 0.2, 0.4) (0, 0.2, 0.4)
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Route 1 (Through the Woods) Route 2 (Over the Hill) Route 3 (The Long Way Around)

Fig. 3. Bounded Rationality Cost Evaluation for Three Route Example



the Liou and Wang index [7] that allows for an additional optimism/pessimism
parameter would be appropriate for this type of problem.

4 Conclusion and Future Work

Fuzzy numbers are a natural way to represent how an agent interprets its en-
vironment. The α-level OWA operator allows an agent to aggregate multiple
fuzzy route features using the principle of bounded rationality. This allows dif-
ferent types of agents to each interpret an environment in their own way and
make unique decisions. The agent interpretation functions and the OWA weight
vector are quite flexible, and can be defined to fit many different domains.

A logical extension of this work is to incorporate the cost evaluation into a
general path-finding algorithm and an agent movement model. A fuzzy shortest-
path algorithm that can return multiple possible routes would be a good way to
provide several route choices to a decision-making agent. Agent movement could
then be guided by following the least-cost route.
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