A Virtual Testbed for the Multidisciplinary
Evaluation of Human-Agent Teaming Dynamics

Audrey L. Aldridge! [0000-0003—=3733-4736] ' Chyistopher
Hudson ! [0000—0002—6216—8234] K ar] Smink![0009—0005-6750-1162]  Andrew R.
Buck2[0000-0002—-8892—3269] Derek T. Anderson2[0000—0001—5888—3617] Victor
Paul®, Rachel Anderson®, Drew Hoelscher®, Mary Quinn®*, Matus

Pleva5[0000*0003*4380*0801], Cindy L. Bethell[0000*0001*9036*3275]7 and Daniel
W Carruthl[0000_0003_0707_9252]

1 Mississippi State University, Mississippi State, MS 39762, USA
ala2140msstate.edu, chudson@cavs.msstate.edu, ks2925@msstate.edu,
cbethel@cse.msstate.edu, dwc2@cavs.msstate.edu
2 University of Missouri, Columbia, MO 65211, USA
buckar@missouri.edu, andersondt@missouri.edu
3 U.S. Army DEVCOM-Ground Vehicle Systems Center, Warren MI 48397, USA
victor.j.paul2.civ@army.mil, rachel.e.anderson46.civ@army.mil,
andrew.l.hoelscher.civ@army.mil
4 Leidos, Inc., Chantilly, VA 20151, USA
mary.m.quinn@leidos.com
5 Technical University of Kosice, Kogice 042 00, Slovak Republic
matus.pleva@tuke.sk

Abstract. While intelligent agents offer substantial potential when in-
tegrated into human teams, challenges persist in achieving effective col-
laboration and information sharing with these systems. A virtual testbed
of modular design was developed to enable rapid implementation of dif-
ferent teaming behaviors, comprehensive observation and measurement
of individual and team performance, and flexibility of team composition,
task objectives, and environment configurations. Using the testbed, an
initial study demonstrated that in a non-hierarchical collaborative task,
sharing information among teammates improved task performance and
the ease with which to work with autonomous teammates, while reducing
participants’ mental workload, as measured by the NASA-TLX survey.
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1 Introduction

Robots, artificial intelligence (AI), and autonomous agents have the potential to
increase efficiency and reduce hazardous risks for humans when integrated into
teams. As experts explore incorporating multiple intelligent systems into hu-
man teams, they recognize the significant capabilities these multi-agent teams
can offer. However, challenges remain in effectively communicating and sharing
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information with these systems and in collaborating with them in ways compa-
rable to interacting with other humans. These can include discrepancies in task
understanding or a team’s limited agility in dynamic environments.

Information sharing within a team plays a pivotal role in shaping team dy-
namics and fostering effective collaboration, as poor communication can result in
misaligned goals and hinder team performance. Conversely, effective information
exchange can promote seamless collaboration and enhance efficiency and perfor-
mance in human-agent teams. As autonomous agents are increasingly integrated
into teams, it is crucial to understand how information sharing affects interac-
tions between humans and autonomous agents as well as how it supports the
development of a common or shared understanding (i.e., shared mental model
(SMM)) of task and team functions).

This paper investigates teaming dynamics through a study using a novel con-
figurable virtual testbed. In the testbed, a human and two autonomous agents
collaborate on a maze-based search task, working together to find keys and
unlock doors. Although the human could technically complete the task indepen-
dently, collaboration was expected to enhance efficiency and effectiveness. The
autonomous agents dynamically assessed trust in their teammates based on prior
interactions and observed task performance. The study examined how three lev-
els of information availability (no personal or shared information, personal but
no shared information, and shared information) influenced team dynamics, task
performance, and participants’ mental workload, offering insights into the critical
role of information sharing in human-agent collaboration.

2 Background and Related Work

To investigate the effects of differing levels of information sharing on human-
agent teams, a virtual modular testbed tailored for flexibility and adaptability
was developed. The virtual testbed supports rapid implementation of diverse
teaming behaviors, enables unrestricted observation and measurement of indi-
vidual and team performance, and allows extensive modifications to team com-
position, task objectives, and the environment. It also facilitates research into the
inter-relational properties of human-agent teaming. A review of existing human-
agent testing environments revealed significant gaps: Few testbeds are designed
to support the type of collaborative, pre-planned coordination expected in real-
world operations. Many focus solely on autonomy or multi-agent teaming, often
excluding human interaction. Current testbeds typically feature either a single
human or agent and enforce rigid, hierarchical team roles where humans always
lead [2]. Other testbeds for human-agent teaming studies were designed to test
communication (explanations) for coordination tasks [4], human factors includ-
ing trust in autonomous aerial vehicles for air combat [8,13|, communication
with AI versus with a human in interdependent tasks [13], and potential mea-
sures for effective work [7].

As the potential for humans and intelligent agents to work together rapidly
grows, it becomes crucial for researchers to address the challenges of human-
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agent teaming. Rather than focusing on one aspect, such as autonomous naviga-
tion or human situation awareness, the virtual testbed envisioned in this work
supports collaboration and promotes interaction from all teammates, creating
an environment where multiple facets of human-agent teaming can be studied
together.

3 Creation of A Virtual Testbed for Conducting
Human-Agent Teaming Studies

The testbed was developed using Unreal Engine (UE 5.1.1) to investigate team-
ing dynamics between humans and autonomous agents in a collaborative, non-
hierarchical, multi-agent task. The testbed is based on a simplified version of
a complex search-and-rescue scenario. In the simplified version, a human and
two autonomous agents navigate a maze to find a target. The maze consists of
strategically placed walls and doors. Some doors must be opened to reach the
goal while others are optional. To navigate through the maze, the agents must
seek out unique keys which unlock corresponding doors. To complete the task,
the team must locate and reach the target within eight minutes. Efficiently com-
pleting the task requires the human participant work with two virtual robotic
teammates. The human should collaborate and rely on them to find and swap
keys as necessary to open doors. In addition to the interactions with the human
teammate, the two virtual robots may collaborate with each other. A human-
agent interface with a visual display, or ‘minimap’, of the environment is included
in the virtual testbed. This interface communicates visual information regard-
ing the status of the task and the environment. It also provides mechanisms for
collaborating with teammates to find and retrieve keys.

By abstracting the task, the environment and task complexity are reduced,
minimizing potential confounding factors and focusing on the elements of pri-
mary interest to the research. As such, assumptions were imposed on the task
space. The target in the environment (an injured person) is assumed to be sta-
tionary. The environment conditions are dynamic in that keys move locations as
they are picked up and dropped; therefore, in this study, participants may lose
track of the keys when they are moved by a teammate. As more information is
shared through the human-agent interface in each study condition, participants
gain awareness of dynamic key locations. Finally, although the environments
are sometimes unknown (key-door assignments, key locations) and partially dy-
namic (key locations), it was assumed that there would be no unexpected events
that would critically derail the teams.

3.1 Search Task in the Maze Environment
The simplified search task required the human-robot teams to locate and reach

a target (an injured person, represented by a trophy object). Participants ma-
neuvered through the environment in first-person view (Fig. 1) using the ‘w’,
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‘a’, ‘s’) ‘d’ keys (commonly used in computer games) or the arrow keys. Addi-
tionally, participants had a birds-eye-view of the entire maze (referred to as the
minimap) in a human-agent interface, as seen on the right of Fig. 1. The envi-
ronment contains 25 unique key-door pairs, where each key unlocks a specific
door. Teammates can hold up to two keys at a time, and once a door is un-
locked, both the door and key are removed from the environment. Collaboration
between participants and the virtual robots is essential to finding and swapping
keys to efficiently progress through the maze. A team is considered successful
when the human teammate reaches the target. If the virtual robots locate the
target, they mark its location on the minimap visible through the human-agent
interface.

Mission Duration: 7:19 Current Keys: #14 ,

Robot 1:

Robot 2:

Doors Opened: H: 0 R1: 1

Fig. 1: First-person view of the maze environment showing Door 14 (left) with
the human-agent interface (right).

3.2 Communication

Collaboration requires some form of communication between agents. In the
testbed, a simulated communication channel allows the human and autonomous
agents to share information. The communication channel is housed in the human-
agent interface. It includes message bars where requests and responses are dis-
played and buttons for requesting and answering requests. In this communication
channel, a human user can use the buttons on the interface to request help find-
ing a key when standing next to the corresponding door. Each request stays
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active in the interface for a maximum of 10 seconds or until one or both team-
mates respond. If the request times out, it is removed from the interface. Each
teammate can only have one request posted at a time. Additionally, the human
user can cancel a request or give up on the robots’ requests for help finding a
key.

3.3 Agent Autonomy and Navigation

The virtual robots operate autonomously without interference or override control
from the human. UE5’s built-in pathfinding algorithm, which is based on the
A* algorithm, was used to compute an optimal path for the agents to reach
their next destination. Zones were placed throughout the environment to act as
waypoints to which the robots would travel. The robots may execute four action
behaviors. They can Ezplore the maze environment to find the target. This
behavior is based on Random Search, where a point on a map is “randomly”
selected to which a robot navigates using the autonomous navigation behavior.
Random Search was modified to prioritize the less traveled zones, eliminating the
potential for the robots to ping back and forth “randomly” between two areas.
The modified Random Search also ensures that the robots traverse as much of
the environment as is accessible via unlocked doors.

At any time a starting location and end location are known, such as the
location of a key, door, or teammate, the robots perform the Search behavior.
Search uses UES’s A*-like pathfinding algorithm to move to the known object.
This behavior is a directed search with a specific object as the end-goal. When a
robot possesses a key that another teammate has requested, the robot exhibits
the Deliver behavior. In the Deliver behavior, the robot begins to move to the
teammate’s location with the intent of delivering the key. Teammates could wait
at their current location or also begin moving toward the robot to retrieve the
key. For this navigation, the robots use UE5’s A*-like pathfinding algorithm
rather than the modified navigation which prioritizes zones. Lastly, the robots
sometimes exhibit the Wait behavior, which was created to help the robots break
free of a deadlock situation. In this behavior, the robot idles for three to five
seconds before resetting its behaviors and starting a new action behavior.

3.4 Agent Protocols and Collaboration Behaviors

In addition to interacting with the human teammate, the two virtual robots col-
laborate with and rely on each other to find and swap keys to open doors. To
do so, the robots can Request help to find a key and can respond to teammates’
requests with an Accept, Reject, or Ignore message. Each of these behaviors is
tied to a set of trust behaviors that help the robots determine how to respond
to teammates’ requests, ideally giving the sense of a cooperative and reliable
teammate. The robots have some ‘understanding’ of what it means to be reliable
teammates. Four trust behaviors dictate how a robot responds to teammates’ re-
quests: Implicit (blind trust), Untrust (uncertain trust), Distrust (lack of trust),
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and Mistrust (misplaced trust). In this study, Mistrust is used as a state for re-
building trust. These four levels of trust can fluctuate during a simulation based
on a set of reciprocal cooperation rules and the resulting grudge that is formed
when teammates do not help each other.

4 Human-Agent Teaming Study

This study uses the virtual testbed to investigate how team performance and
participants’ mental workload are impacted by information availability. This was
a within-subjects study, where counterbalanced randomization of the conditions
determined the order in which participants were exposed to the different levels
of information availability during the simulations. Based on an a priori power
analysis for a repeated measures within factors study design using an effect size
of 0.25, a significance level («) of 0.05, and a power of 80%, the total sample size
was calculated to be n = 55. To account for unexpected issues and circumstances,
the target sample size was set to 60. Participants were recruited from Mississippi
State University’s Psychology Research Program and received either a $20 gift
card or 2 research credits for their psychology class as compensation for their
time. The study protocols (IRB-24-223) were reviewed and approved as Exempt
by Mississippi State University’s Human Research Protection Program (HRPP)
and Institutional Review Board (IRB).

4.1 Conditions

Three study conditions defined the levels of available information. All conditions
contained a minimap that displayed walls, door placement, and agent locations.
Agent locations were always updated in real-time during the simulations.

In Condition 1, known as the “No Info” condition, the minimap contained
minimal information and did not communicate the identity of the doors, key
locations, or door-key pairings. This meant participants had to remember where
they saw specific keys and doors. To create an equivalent cognitive state in the
robots, they were only capable of storing the locations of two doors and two
keys. Fig. 2 displays the minimap of available information from each teammate’s
perspective for Condition 1. This condition is similar to many state-of-the-art
devices with GPS tracking.

Condition 2, referred to as “Personal Info”, contained the same information
as in Condition 1. However, the minimap visually represented each teammate’s
individual mental model of the environment. Fig. 3 displays the minimap of avail-
able information from each teammate’s perspective for Condition 2 to demon-
strate how each teammate can only access information based on their experience
in the environment. This includes the locations of teammates, doors, and keys
as well as door-key matches, indicated by the matching color and number. In
this condition, the minimap used Fog of War [11] to show areas that had not
been searched by the participant. As the participant moved through the environ-
ment, the “fog” unveiled doors, keys, and their unique identifiers as these objects
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Robot 1 Robot 2

Fig. 2: Each teammate’s perspective of the information available on the minimap
in Condition 1.

were seen from the participant’s first-person view. The robots had their own ver-
sion of a memory model they could reference with the same information as the
minimap for the participant but without the visual display. No information was
shared between teammates, other than teammate locations. This meant that if a
teammate saw a key and marked its location in their personal mental model (or
minimap), their mental model or understanding of that key’s location did not
get updated when the key was picked up by a fellow teammate. This condition
represents teammates operating from their own (personal) mental model that is
not shared with other teammates.

Robot 2

Fig. 3: Each teammate’s perspective of the information available on the minimap
in Condition 2.
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In Condition 3, referred to as the “Shared Info” condition, the minimap
contained the combined information stored across all three teammates’ personal
mental models to reflect a team’s common understanding or SMM. Once again,
this included the locations of teammates, doors, and keys as well as door-key
pairs, indicated by the matching color and number, but as they were uncov-
ered by each teammate. This means that as teammates moved through areas
previously searched by another teammate (displayed as areas cleared of fog),
the shared minimap reflected the current state of that part of the maze. Specif-
ically, all teammates had access to the information uncovered by every other
teammate. Fig. 4 displays the minimap of available information from each team-
mate’s perspective for Condition 3 to demonstrate that everyone had access to
the same information. This condition represents a team operating from their
common understanding (or SMM) of a task and environment.

Fig. 4: Each teammate’s perspective of the information available on the minimap
in Condition 3.

4.2 Participants

A total of 61 students, ages ranging from 18 to 33 with an average age of 18.69,
participated in the study. One participant withdrew from the study due to dif-
ficulty using the keys on the keyboard. Three participants were excluded from
the data analysis due to 1) failure to follow instructions or 2) refusal to answer
survey questions. Of the remaining participants, two reported having experi-
ence working on Al and autonomous systems. Two participants reported having
worked with simulated environments. Fifteen participants reported playing more
than three hours of computer/video games per week, and five of those reported
playing five or more hours of computer/video games per week.
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4.3 Study Protocol

At the start of a session, participants reviewed the task description and an in-
formed consent document, with the option to ask questions before deciding to
participate. After consenting, participants watched an introductory video and
completed a 15-minute tutorial, which familiarized them with the search task,
environment features, keyboard navigation, task mechanics, the human-agent
interface, and the think-aloud method, where thoughts are verbalized while per-
forming a task. The think-aloud method was included in the study to mimic
the radio communication that might happen during a mission. Before starting
each search task, participants viewed a brief video explaining the assigned study
condition. Participants were given eight minutes to complete a search task in
the simulated environment, after which they answered the Workload Profile and
NASA-TLX surveys to measure their perceived mental workload. After answer-
ing survey questions, participants could take a short break before beginning the
next task. At the end of the session, participants completed demographic ques-
tions and provided feedback on their experience with video games, autonomous
vehicles, and Al agents. After a debriefing and final questions about their expe-
rience participating in the study, the session concluded. The total time commit-
ment for the study was approximately 90 minutes.

4.4 Assessments

Overall team performance on the search task was evaluated based on success and
duration. Due to the complexity of the maze and the difficult time constraint,
secondary factors including the number of critical keys found and the number of
doors opened were used in addition to assess performance. Although the main
task was not to open as many of the doors as possible, the total number of doors
opened by a team was included to check if participants became overly focused
on opening all the doors instead of strategically choosing doors to open. Mental
workload of the overall search task was measured using the Workload Profile [10]
and the NASA Task Load Index (NASA-TLX) [6]. Additionally, the Workload
Profile evaluated participants’ mental workload regarding four sub-tasks. These
included working with the robot teammates, understanding the information on
the minimap, using the information on the minimap, and verbally answering
questions. In rating the proportional resource demands of a task, “0” equates
to no attentional demand, while “1” equates to maximum (or full) attentional
demand [10, 14]. To score overall workload for each task, the ratings along the
different dimensions were summed. To evaluate workload using the NASA-TLX,
the raw workload scores were analyzed individually and averaged to yield a total
workload score [5, 1].

5 Data Analysis and Results

A mixed-methods analysis of the results was conducted to determine how three
conditions of information availability (C1 = No Information, C2 = Personal In-
formation, C3 = Shared Information) impacted performance (duration, critical
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keys found, number of doors opened) and mental workload (WP and NASA-
TLX). The Shapiro-Wilk test concluded that duration, task success, number of
critical keys found, the NASA-TLX, and the Workload Profile were not normally
distributed, whereas the number of doors opened was normally distributed. A re-
peated measures univariate analysis of variance (ANOVA) was used to analyze
the number of doors opened, with partial eta-squared determining the effect
size and the Tukey HSD test comparing the conditions pairwise to determine
which conditions were statistically significantly different. For the nonparametric
data, the Friedman test, a nonparametric alternative to the repeated measures
ANOVA, was used to evaluate the differences between conditions for each de-
pendent variable. Kendall’s W coefficient was used to determine effect size for
significant results from the Friedman Test. Based on Cohen’s interpretation of
effect size [12, 3], Kendall’s W coefficient is considered a small effect from 0.1 to
< 0.3, moderate effect from 0.3 to < 0.5, and a large effect if >= 0.5. Pairwise
testing, using the Wilcoxon signed rank test with Bonferroni’s correction, was
performed to determine which conditions were statistically significant for the
nonparametric data.

5.1 Individual and Team Performance

Due to the small portion of participants who successfully found the target, ad-
ditional measures of performance were included in the data analysis. As such,
task performance is broken down into individual and team performance. Team
performance consists of duration, success rate, critical keys found, and number
of doors opened. Individual performance is described by the number of doors
opened by a teammate. This measure was used to determine if participants
strayed from focusing on the overall task: finding the target. Table 1 displays
the average values for team performance measures across the three conditions
(C1 = No Info, C2 = Personal Info, C3 = Shared Info).

Table 1: Mean values for team performance measures per information availability
condition. Best scores shown in bold and enclosed in a rectangle.

. Critical Doors
Condition Success Duration Keys Found Opened
Rate (min:sec) (3 total) (25 total)
No Info
(1) 3.51% 8:00 0.75 10.14
Personal Info
(C2) 1.75% 7:59 1.88
Shared Info
(C3) 38.60% 7:11 2.21 10.54
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Task Success: Table 1 displays the rate at which participants successfully com-
pleted the maze in each condition. The Shapiro-Wilk test concluded a non-
normal data distribution. The Friedman rank sum test found a statistically sig-
nificant difference in task success for the three information availability condi-
tions, X2(2) = 36.61, P < 0.0001, with a moderate effect (W = 0.32). Perform-
ing the Wilcoxon signed rank test revealed a statistically significant difference
in the success rate of participants between Conditions 1 and 3 (P < 0.0001) and
Conditions 2 and 3 (P < 0.0001).

Task Duration: Task duration was measured as the number of minutes taken
for a participant to reach the target in the maze environment, with a maximum
of eight minutes (min) allowed. From the figure, it seems that Condition 1 and
Condition 2 required nearly all participants to use the full eight minutes to search
the maze for the target. Alternatively, Condition 3 saw a significant drop in task
duration from Conditions 1 and 2, even though the median value for Condition
3 remained at eight minutes. The result of the Friedman rank sum test indicated
a statistically significantly difference in duration across the three information
availability conditions, X2(2) = 39.13, P < 0.0001, with a moderate effect size
(W = 0.34). Using the pairwise Wilcoxon signed rank test between conditions
revealed statistically significant differences in task duration between C1 and C3
(P < 0.0001) and C2 and C3 (P = 0.0001).

Number of Critical Keys Found: Like duration, the data for the number of
critical keys found could not be normalized. The results in Table 1 reveal that
participants found the fewest critical keys in Condition 1, with an increase in
critical keys found in Condition 2 and a further increase in critical keys found in
Condition 3. The result of the Friedman rank sum test indicated a statistically
significant difference in the number of critical keys found across the three infor-
mation availability conditions, X2(2) = 67.88, P < 0.0001, with a large effect size
(W = 0.60). Using the pairwise Wilcoxon signed rank test between conditions
revealed statistically significant differences in the number of critical keys found
between C1 and C2 (P < 0.0001), C1 and C3 (P < 0.0001), and C2 and C3 (P
= 0.02). Fig. 5 shows a violin plot of the number of critical keys found for the
three conditions (C1 = No Info, C2 = Personal Info, C3 = Shared Info).

Number of Doors Opened: On average, teams opened three more doors in
Condition 2 than they opened in Conditions 1 or 3. Because the Shapiro-Wilk
test confirmed normal distribution for the number of doors opened, Fisher’s
repeated measures one-way ANOVA revealed that the number of doors opened
was statistically significantly different across conditions, F(2, 112) = 23.02, P <
0.0001, 7712)2 = 0.29 (large effect). From the Tukey HSD test, pairwise differences
between C1 and C2 (P < 0.0001) and C2 and C3 (P < 0.0001) are statistically
significant.

For the individual performance results, i.e. the number of doors opened by
each teammate, participants opened the most doors in Condition 3 (3.91), fol-
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Fig.5: Number of critical keys found across the three information availability
conditions (C1, C2, C3). P-value scale: * (<0.05), ** (<0.01), *** (<0.001).

lowed by Condition 1 (3.53) and Condition 2 (3.20), respectively. Robot 1 opened
the most doors in Condition 2 (6.36), followed by Condition 3 (3.57) then Condi-
tion 1 (3.13). Additionally, Robot 2 opened the most doors in Condition 2 (4.39),
followed by Condition 1 (3.48) then Condition 3 (3.05). With these values all
being relatively similar across the conditions, it can be deduced that participants
did not get carried away with opening as many doors as possible as a result of
having more information available.

5.2 Mental Workload

Both the Workload Profile and NASA-TLX were administered after participants
completed each condition. The mean values for mental workload, as measured
by the Workload Profile, are C1 = 4.03, C2 = 3.95, and C3 = 3.75. The mean
values for mental workload, as measured by the NASA-TLX, are C1 = 53.80,
C2 =46.37, and C3 = 39.91. The values in bold reflect the best scores for each
measure.

Workload Profile: In addition to the overall search task (OST), the Workload
Profile was used to evaluate subjective mental workload for the following four
sub-tasks: (ST1) working with robot teammates, (ST2) understanding informa-
tion from the minimap, (ST3) using information on the minimap, and (ST4)
verbally answering questions. Table 2 displays the mental workload scores for
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the overall search task and each of the sub-tasks, as measured by the Workload
Profile.

Table 2: Average mental workload scores, measured by the Workload Profile,
for each condition. Best (lowest) scores for each task are shown in bold. Most
demanding sub-task (ST) for each condition is enclosed in a rectangle.

Condition ‘ OST ‘ ST1 ‘ ST2 ‘ ST3 ‘ ST4 ‘
Nfclln)fo 4.03 3.24 3.01 3.17 3.53

Pers‘()ggl) Info 3.95 2.88 3.13 3.26 3.25

Sha{gdg)lnfo 3.75 2.79 3.10 3.18 3.28

Note: OST = overall search task, ST1 = working with robot teammates, ST2 = un-
derstanding information from the minimap, ST3 = using information on the minimap,
ST4 = verbally answering questions.

(OST) Owerall Search Task: For the overall search task (Table 2), participants
reported that searching the maze for the target in Condition 1 required the most
amount of mental effort (4.03), compared to Condition 2 (3.95) and Condition
3 (3.75). Additionally, the results in Table 2 indicate that the overall search
task required the most mental effort of all tasks in each information availability
condition. The Friedman rank sum test did not indicate a statistically significant
difference in the perceived mental effort required for the overall search task across
the three conditions.

(ST1) Working with Robot Teammates: When working with robot teammates,
the Workload Profile results (Table 2) show that Condition 1 required the highest
average mental effort (C1 = 3.24), followed by Condition 2 (C2 = 2.88) and then
Condition 3 (C3 = 2.79). The Friedman rank sum test indicated a statistically
significant difference in the perceived mental effort required for working with
robot teammates across the three information availability conditions, X2(2) =
10.20, P = 0.006, W = 0.09 (small effect). The pairwise Wilcoxon signed rank
test found statistically significant differences between C1 and C2 (P < 0.01)
and between C1 and C3 (P = 0.01). Fig. 6 shows a violin plot of the mental
workload for Sub-Task 1 (ST1) ‘working with robot teammates’ across the three
conditions.

(ST2) Understanding Information on the Minimap: The results from the Work-
load Profile in Table 2 show that the average mental effort required to understand
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Mental Workload Scores (WP)
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Fig. 6: Mental workload scores from Workload Profile (WP) for the ST1: Working
with Robot Teammates for each information availability condition (C1, C2, C3).
P-value scale: * (<0.05), ** (<0.01), *** (<0.001).

the information available on the minimap was greatest for Condition 2 (C2 =
3.13), less for Condition 3 (C3 = 3.10), and least for Condition 1 (C1 = 3.01).
The Friedman rank sum test did not indicate a statistically significant difference
in the perceived mental effort required for understanding the information on the
minimap across the three information availability conditions.

(ST8) Using Information from the Minimap: In Table 2, the average mental
effort required to use the information available on the minimap was greatest in
Condition 2 (C2 = 3.26), less in Condition 3 (C3 = 3.18), and least in Condition
1 (C1 = 3.17). The Friedman rank sum test did not indicate a statistically
significant difference in the perceived mental effort required for working with
robot teammates across the three information availability conditions.

(ST4) Verbally Answering Questions: For the sub-task of verbally answering
questions, the Workload Profile results indicate that Condition 1 (C1 = 3.53)
required the highest average mental effort to perform the sub-task. Consequently,
Conditions 2 and 3 (C2 = 3.25 and C3 = 3.28) required slightly less mental effort
for the sub-task than Condition 1 required, although nearly the same amount
between Conditions 2 and 3. The Friedman rank sum test did not indicate a
statistically significant difference in the perceived mental effort required for the
overall search task across the three information availability conditions.



Virtual Testbed for Evaluating Human-Agent Teaming Dynamics 15

NASA-TLX: On average, for the NASA-TLX results, Condition 1 (C1) re-
quired the most mental workload, followed by Condition 2 (C2), and Condi-
tion 3 (C3), respectively. After confirming a non-normal distribution with the
Shapiro-Wilk test, the Friedman rank sum test revealed statistically significant
differences in the NASA-TLX scores across the three information availability
conditions, X2(2) = 34.86, P < 0.0001, W = 0.31 (moderate effect). The pair-
wise Wilcoxon signed rank test found statistically significant differences between
C1 and C2 (P < 0.0001), between C1 and C3 (P < 0.0001), and between C2
and C3 (P = 0.004). Fig. 7 displays violin plots of the NASA-TLX data.

Task Load Scores (NASA-TLX) per Condition

X ieaman(2) = 34.86, p = 2.702-08, Wkengan = 0.31, Clos, [0.18, 1.00], Npars = 57
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Fig.7: NASA-TLX scores for the overall search task for each information
availability condition (C1, C2, C3). P-value scale: * (<0.05), ** (<0.01), ***
(<0.001).

Table 3 displays the individual workload scores for each dimension measured
by the NASA-TLX. From the table, Mental, Temporal, Effort, and Frustra-
tion show gradual decreases from Condition 1 to Condition 2 to Condition 3.
Additionally, Performance shows a gradual increase across the conditions. The
Friedman rank sum test revealed statistically significant differences in Mental
Demand (X2(2) = 20.58, P < 0.0001, W = 0.18 (small effect)), Temporal De-
mand (X2(2) = 21.09, P < 0.0001, W = 0.18 (small effect)), and Frustration
(X2(2) = 17.84, P = 0.0001, W = 0.16 (small effect)). Pairwise testing using
the Wilcoxon signed rank test indicated that C1,C2 (P = 0.0004) and C1,C3
(P = 0.0005) were statistically significantly different for Mental Demand. For
Temporal Demand, statistically significantly differences were revealed between
C1 and C2 (P = 0.008) and between C1 and C3 (P = 0.0003). Lastly, C1 and
C3 had the statistically significant difference (P = 0.003) for Frustration.
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Table 3: NASA-TLX scores per mental workload dimension and condition (C1,
C2, C3). Best (lowest, except for Performance) scores are shown in bold. Most
taxing dimensions (excluding Performance) for each condition are enclosed in a
rectangle.

Cond Mental Phys Temp Perf Effort Frust
Cl1 66.32 15.70 67.19 20.88 58.16 36.32
C2 56.84 12.72 58.60 31.75 53.25 28.60

C3 52.30 15.44 51.40 56.93 50.26 27.02

Note: Cond = Condition, Phys = Physical, Temp = Temporal, Perf = Performance,
Frust = Frustration.

6 Discussion

The virtual testbed developed for this study was shown to support investigations
of non-hierarchical multi-agent collaboration in a search-and-rescue analogue.
The study demonstrated the use of the testbed for understanding human-agent
interactions and insight into the effects of information sharing on team and
individual task performance. With this testbed, real-time communication and
collaboration with autonomous agents such that trust and reliance among team-
mates is encouraged and team performance is improved can be investigated.

6.1 Task Performance

Regarding task duration, success rate, and the number of critical keys found,
overall task performance of the human-robot teams improved as more informa-
tion became available. Interestingly, the number of doors the teams opened in
each condition did not statistically significantly increase as more information
became available, meaning participants did not obsess over opening every door
they saw. Although the slight increase in the number of doors opened by a team
from Condition 1 to Condition 2 could signify this behavior, the individual per-
formance breakdown revealed that the robots were the cause of the increase in
the doors opened metric. These results demonstrate that participants did not be-
come distracted by opening as many doors as possible as information availability
increased.

The results pose an interesting question regarding what happened in Con-
dition 2 such that a team was able to find significantly more critical keys in
Condition 2 than in Condition 1, open significantly more doors, but were un-
able to find the target more frequently. Knowing that the robots were the cause
for the statistically significant increase in doors opened, it is probable that the
eight-minute time constraint was too restricting, and with a small addition of
time, more participants might have found the target in Condition 2 since a larger
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number of critical keys were found. Alternatively, looking at the average number
of doors opened by each teammate it could be that the participants and robots
were working more as individuals in a team rather than as teammates perform-
ing a collaborative task. After further analysis on the participants that found
all three critical keys in Condition 2 but did not open the door, it was revealed
that several of the participants were on their way to open the final door and find
the target when the time limit was reached. However, it is difficult to determine
whether adding time to the time constraint would result in a statistically sig-
nificant increase in success rate from Condition 1 to Condition 2 to Condition
3.

6.2 Mental Workload

Interestingly, the Workload Profile indicated a reduction in mental workload as
the information available increased, albeit without significant results between
Conditions 2 and 3. Nonetheless, only the NASA-TLX revealed a significant
gradual decrease in mental workload as more information became available to
the teammates. These results could be consequential to participants not fully
understanding the definitions of the different Workload Profile dimensions and
how the dimensions might apply to the specific task in question. Alternatively,
these results could be due to the specific dimensions of mental workload that
each metric measures. For instance, the eight dimensions of the Workload Pro-
file, provide a thorough and well-rounded metric of mental workload [10] and
have shown to have a high diagnosticity [10, 14], while the NASA-TLX’s six di-
mensions have been scrutinized for overshadowing researchers’ mental workload
demands of interest, namely those more directly involved with mental workload
and attentional demand than with task difficulty [9,10]. As such, the Workload
Profile and NASA-TLX were included in this study to measure different aspects
of mental workload. In addition to mental workload decreasing, it was expected
for the focus of participants’ mental workload to change in response to either a
change in a participant’s task focus or to a change in their task strategy. Re-
portedly, the Workload Profile has shown sensitivity and precision in measuring
differences between specified tasks [10, 14].

The statistical tests performed on the Workload Profile scores for the four
sub-tasks revealed that participants found it the least mentally demanding to
work with the robots when the information on the minimap was being shared
among all teammates (Condition 3). It is thought that no significant decrease in
mental workload was seen between C2 to C3 because participants were influenced
by the significant increase in the number of doors the robots opened in Condition
2, compared with Condition 3. From the think-aloud method the participants
performed, it is clear they were surprised by how many doors the robots opened
in Condition 2. Additionally, from the think-aloud method, participants noted
more often that they were requesting help from the robots and accepting to help
the robots compared with Condition 1. For Condition 3, the requests participants
made changed from needing help finding a key they had not seen to requesting
help fetching a key that a robot was near. Because all information was shared in
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Condition 3, the robots more frequently successfully handed off keys participants
requested. Experiencing more successful collaborations with the robots likely
influenced the participants’ perceived mental workload in regard to working with
the robots in Condition 3.

The raw scores of the NASA-TLX dimensions (Table 3) indicate that sharing
a team’s common understanding among teammates (Condition 3) helped shift
the load on Temporal Demand to achieve a more balanced mental workload
across the other dimensions. By reducing Temporal Demand and Mental De-
mand, participants used less effort, experienced less frustration, and perceived
better performance as more information became available to teammates. As |9,
10] have pointed out, the NASA-TLX includes measures of task difficulty rather
than focusing on attentional demand, making the NASA-TLX and its dimen-
sions a descriptive measure of how and why task performance improved. Making
more information available to teammates not only reduced participants’ men-
tal workload, mainly Mental Demand and Temporal Demand, but also made
the search task easier, seen as reduced Effort and Frustration with increased
(perceived) Performance.

7 Conclusion and Future Work

Future teams will incorporate intelligent agents to more efficiently accomplish
mission objectives and prioritize team safety. In these teams success will de-
pend on effective collaboration that utilizes the strengths of both humans and
agents, alongside a shared or common understanding of task and team functions.
Establishing trust, fostering reliance, and maintaining a common understand-
ing of task objectives should enhance team performance and reduce the mental
demand of human teammates. A novel virtual testbed was created to begin
multidisciplinary studies investigating multi-agent team collaboration, common
understanding, and other teaming dynamics. Findings of an initial study using
this testbed to evaluate how information availability impacted teaming dynamics
revealed that as more information became available, a multi-agent team’s perfor-
mance on a search task improved. Participants’ total mental workload decreased
as the minimap reduced the cognitive load on working memory. Visibility into
teammates’ actions and results eliminated guesswork, enabling participants to
rely on their collaborators and focus their efforts where they were most needed,
further reducing the amount of frustration, effort, mental, and temporal demand
required for improved performance. The amount of mental workload used on sub-
tasks, as measured by the Workload Profile, shifted from remembering door and
key locations while interpreting the robots intent and actions (Condition 1) to
focusing on strategies using the information available to collaborate with the
robot teammates, verbally answer real-time questions, and complete the overall
search task (Condition 3). The testbed and task developed and demonstrated
in this study can be adapted to look at numerous factors potentially affecting
teaming between humans and autonomous agents. While this study investigated
the effects of information sharing on team performance and mental workload



Virtual Testbed for Evaluating Human-Agent Teaming Dynamics 19

for human participants, future work could investigate the effects of failures in
understanding of the task requirements (e.g., an autonomous agent collects keys
but never uses them to open doors). In addition, the data collected during the
task performance includes think-aloud data which could be analyzed to assess
speech stress levels as a real-time assessment of human stress and potentially
provide insight into trust in the autonomous agents.
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